Introduction

Quantum information theory is an exciting new development at the intersection
of physics, mathematics and computer science. It is based on the empirical
observation that quantum systems behave in a fundamentally different way from
“classical” ones.

In the study of digital information we may profitably ignore many of the specific
aspects of a system. We do not care whether our information is stored electri-
cally, magnetically, optically, or even on paper punch cards, all that matters is
that it can be interpreted as bits, and that the system is capable of manipulating
those bits.

A similar situation obtains in the study of quantum information systems. We
need not concern ourselves with whether quantum information is represented
using photon polarization, nuclear spin, etc., only that our system is capable of
storing and manipulating quantum bits, or “qubits”. This is not to trivialize the
matter. To date, only a few specialized quantum information systems have been
physically realized. Many scientific and engineering challenges remain, foremost
among them, how to faithfully store collections of qubits in a way that avoids
decoherence.

The great — and as yet unrealized — prize is the construction of a general purpose
quantum computer. What could such a machine do? It would not be able to
compute any (mathematical) functions that cannot be computed on a classical
computer, such as the halting problem for Turing machines or the word problem
for groups. The reason is that we can (very inefficiently) simulate a quantum
computer on a classical one.

However, a quantum computer would potentially make many computable but
infeasible functions feasible. For reasons that we will learn about shortly, quan-
tum information systems have the property that they contain an inherent par-
allelism that can lead to a massive reduction of run-time resource utilization of
programs. Such a quantum speed-up is what will potentially bring whole classes
of problems into the realm of feasibility. This will open up new possibilities,
and potentially, create new difficulties.

One example of a quantum speed-up is the task of searching an unsorted list for
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a particular element. Classically, the best we can do is to examine each element
in turn, so we would expect to find our target in n/2 time on average. However,
there is a known quantum algorithm (due to Grover) that can do it in y/n time.
A machine that could execute such an algorithm would be invaluable to the
likes of Google and Oracle.

Another, potentially even more disruptive example involves prime factorization.
The best known algorithms for this task take time exponential in the size of the
input. But there is a known quantum algorithm (due to Shor) that can do it
in polynomial time. A machine that could execute such an algorithm would be
invaluable to mathematicians — and to intelligence agencies, because the infea-
siblilty of this, and related, problems underlies much of the cryptography that
we rely on for protecting everything from national security secrets to our credit
card numbers when shopping online. But in this case, when the universe closes
a door, it opens a window: quantum information systems introduce the possi-
bility of quantum cryptography, in which resistance to certain types of attack
has the status of a natural law.

The problems of searching and factoring lie within a (classical) complexity class
known as NP. Such problems may (as in the case of factoring) be hard to solve,
but have the property that a candidate solution is easy to verify — for factor-
ing, you just need to multiply. But there are many computational problems
of interest that lie beyond even the complexity class NP. Salient among these
are physical simulations. When we write a computer program to simulate a
chemical or nuclear reaction, the only way we can know whether our simulation
is any good is to compare its predictions to experimental results. For a clas-
sical computer, the simulation typically involves exponential overhead, so the
behavior of non-trivial systems is both infeasible to compute and impossible to
check without running the experiment anyway.

For physical systems for which quantum mechanics provides an accurate de-
scription (either because it turns out to be the fundamental theory of our re-
ality or because whatever other effects there may be are negligible) we should
be able to efficiently simulate their behavior using a quantum computer. The
conjecture that all physical systems are inherently quantum, and can thus be
efficiently simulated by a quantum computer is known as the quantum strong
Church-Turing thesis.

Through decades of experimenting and theorizing, people have discovered math-
ematical structures which seem to accurately describe the behavior of quantum
information systems; that is, they have formulated a theory of quantum infor-
mation.

Basically, quantum information systems are represented by finite-dimensional
vector spaces with an inner product operation, known as (finite-dimensional)
Hilbert spaces. From the structure of Hilbert spaces, we are able to derive prop-
erties of quantum information systems. This presentation seems to be consistent
with all known experimental observations. However it has some drawbacks: is
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not modular, especially perspicuous, or for that matter, very well-motivated.
We will incrementally come to understand some of the reasons for this, but to
(perhaps over-) generalize, the core issue is that it is an analytic characteriza-
tion.

Consider the apt analogy of geometry. There are two general approaches that
can be taken. One is analytic. Historically this approach came much later, but
for many applications it has proved wildly successful. In the analytic approach,
properties of geometry emerge as consequences of the properties of another,
ambient, system; e.g. of vector spaces with a choice of basis and inner-product
over the real numbers. This approach is highly amenable to computation —
indeed, most computer geometry-based systems take this approach — but the
flip side of this fact is that many qualitative facts about geometry require a lot
of computation.

In contrast, the synthetic approach to geometry is the one pioneered in antiquity
by Euclid. Here the entire theory is reduced to a collection of basic axioms (e.g.
Euclid’s famous five postulates) and a collection of rules by which new theorems
may be deduced from old. This approach has the advantage of perspicuity:
proofs tend to have a natural structure. It is also modular: famously, the
parallel postulate may be swapped out for a variant, leading to spherical or
hyperbolic geometry.

A synthetic approach to quantum information systems shares these advantages
of modularity and perspicuity. Furthermore, it is amenable to the tools of
a branch of math called category theory, and in particular, to description by
diagrammatic graphical languages.



