
Monotone Inductive Definitions and consistency of New

Foundations

Sergei Tupailo∗

Institute of Cybernetics at TUT, Tallinn, Estonia

sergei@cs.ioc.ee

September 30, 2005

Abstract

In this paper we reduce the consistency problem for NF to consistency of a certain extension of Jensen’s
NFU. Working in NFU+Pairing, which is known to be consistent relative to Zermelo set theory, due to
Jensen [19], we define a certain monotone operation pw and conclude that existence of its least fixpoint
is sufficient to model NF.

1 Introduction. New Foundations

New Foundations, NF, is a system of set theory named after Quine’s 1937 article [20] ”New foundations for
mathematical logic”, where it was introduced. The language L∈ of NF is the simple set-theoretic language,
i.e. the usual first-order language with the only constants = and ∈. The logic is classical first-order with
equality. The only non-logical axioms are Extensionality and Stratified Comprehension as described below.

Extensionality is an axiom

Ext : ∀x∀y
(

∀z(z ∈ x↔ z ∈ y)→ x = y
)

.

Definition 1.1 Stratification of a formula ϕ is an assignment of natural numbers to variables (both free and
bound) in ϕ s.t. every atomic subformula x = y of ϕ receives an assignment xn = yn, for some n, and every
atomic subformula x ∈ y of ϕ receives an assignment xm ∈ ym+1, for some m. A formula ϕ is stratified iff
there exists a stratification of ϕ.

Examples. The formula x ∈ y ∧ y ∈ z is stratified, but the formula x ∈ y ∧ y ∈ x is not.

Stratified Comprehension is an axiom scheme

SCA : ∃y∀x
(

x ∈ y ↔ ϕ[x]
)

,

for every stratified formula ϕ with y not free in ϕ.

It is known that NF is at least as strong as Simple Type Theory with Infinity, but NF is not known to be
consistent, relative to any known extension of Zermelo-Fraenkel Set Theory, – see e.g. [23, 24, 26, 27, 19, 6,
11, 3, 15, 12, 13, 16, 17, 25, 10, 18].

There is a number of subsystems of NF which are known to be consistent. Perhaps the most famous of
them is NFU, so called ”NF with Urelements”, introduced by Jensen 1969 [19]. NFU results from NF by

∗A part of this work was done during the author’s visit to The Ohio State University, USA, whose support is gratefully

acknowledged

1

restricting extensionality to non-empty sets, i.e. by replacing the axiom Ext by the following axiom

Ext′ : ∀x∀y
(

∃z(z ∈ x ∨ z ∈ y) ∧ ∀z(z ∈ x↔ z ∈ y)→ x = y
)

.

NFU, however, is surprisingly weak: its model can be constructed within Peano Arithmetic. One of the
drawbacks of NFU is that, contrary to NF, it doesn’t prove the axiom of Infinity. On the other hand, it
was also shown by Jensen [19] that NFU is consistent with Infinity, as well as with Infinity and Choice, AC,
notwithstanding NF refuting AC, according to Specker [26]. This time the consistency results are relative to
a much stronger theory, Zermelo Set Theory with Separation restricted to ∆0 formulae (also known as Mac
Lane Set Theory), or, equivalently, Simple Type Theory with Infinity (see [19, Theorem 1 and Lemma 4]).
There are further consistent extensions of NFU, forming a kind of ”large cardinals program” in this set
theory – see e.g. [19, 6, 17, 25]. It’s worthwhile to note that appropriate NF- large cardinal axioms, when
added to NF, or even to NFU, do allow to model ZF: a good reference is [16].

This paper is an attempt to apply the so called bisimulation method in order to model NF in an appropriate
extension of NFU. This method has been used in many different situations, when there was a need to
satisfy Extensionality in a non-extensional, non-wellfounded, framework: basic references here are [1] and
[2]. On the language part, in order to carry out necessary constructions, the only required addition to L∈

is a type-preserving ordered pairing function 〈·, ·〉 built-in. The fact that this extension is equivalent (in
NF) to having Infinity axiom was shown first by Rosser [24] (but see also Quine [21]), and in the context of
NFU was employed by Holmes [15, 16]. When having this kind of pairing, it was easy to talk about finite
sequences, trees and bisimulations, which are the key preparatory notions in the present paper. Working in
NFU + Pairing , NFUP, we define a certain monotone operation pw acting on sets of trees and conclude
the following:

Lemma 3.4 Any set models all Equality axioms of NF,

Lemma 3.19 Any fixpoint of the pw operation models Stratified Comprehension,

and

Lemma 3.18 Any least fixpoint, in addition, models Extensionality.

Thus, existence of a pw- least fixpoint is sufficient to model NF.

This connects us with the well-known MID principle, which asserts existence of least fixpoints of monotone
operations and has been studied extensively in different areas of Mathematical Logic. For example, in
Set Theory, many ZF- large cardinal axioms can be seen as the MID principle for particular monotone
operations; in Proof Theory, much research has been done about the MID principle over Peano Arithmetic
and subsystems of Analysis, for a start see [4]; in Computer Science, one manifestation of MID is various
µ-calculi.

Related to all of the above, including New Foundations, is the study of MID in Feferman’s Explicit Mathe-
matics, EM: one can start from [9, 14, 22, 31]. Explicit Mathematics can be seen as an extension of NFUP

containing only two types, cf. [5]; for this reason the only set operations f one can talk about in EM are
type-preserving (or type level), i.e. such that x and f(x) must have the same type. However, since EM

postulates many more set existence principles than just those provided for by Stratified Comprehension, the
very question of consistency and strength of MID becomes very non-trivial; this question has been answered,
positively. In NFUP in general, as well, MID for type level operations easily follows from Stratified Com-
prehension, but the consistency question seems to be much more difficult if the operation is not so. Anyway,
for our operation pw, a positive answer would imply Consis(NF).

2 Preliminary developments in NFUP: sequences, trees and bisim-

ulations

Throughout this paper, NFUP will mean an extension of NFU as described in the Introduction by the
ordered pairing operation built in. Stratified Comprehension SCA and restricted Extensionality Ext′ axioms

2

remain as above; now we describe a mechanism to include ordered pairing. To do this, we add to the language
L∈ the ordered pairing 〈·, ·〉 function constant and adjoin to the theory the following Pairing axiom:

Pair : 〈x, u〉 = 〈y, v〉 → x = y ∧ u = v.

Using Pairing, we can conservatively define projection functions p0 and p1. Namely, translate every atomic
formula

ψ[p0(t)] :⇔ ∃x∃y (t = 〈x, y〉 ∧ ψ[x]),

ψ[p1(t)] :⇔ ∃x∃y (t = 〈x, y〉 ∧ ψ[y]).

From this translation we see that p0 and p1 are inverses of 〈·, ·〉:

Unpair : p0(〈x, y〉) = x ∧ p1(〈x, y〉) = y.

The new extended language will be called LP. The notion of stratification is adjusted in such a way that
in the term 〈s, t〉 the components s and t must have the same type n, and then the whole term 〈s, t〉 is also
assigned the type n. The requirements for xn = yn and xm ∈ ym+1 of the Definition 1.1 are left intact, now
relating to terms s, t instead of mere variables x, y. It follows that the type of p0(t), p1(t) must be the same
as the type of t. Keep in mind that in the SCA axiom of NFUP the formula ϕ must be stratified in the
new sense.

NFUP is formulated in LP and based on classical logic with equality. We set

NFUP := Ext′ + SCA + Pair.

In this paper by default we will be reasoning in NFUP. V will denote the universal set {x | x = x}, and Λ
the empty set {x | x 6= x}. We customarily define 〈x1, . . . , xn〉 := 〈〈x1, . . . , xn−1〉, xn〉 for n ≥ 3.

Having ordered pair at our disposal, we can define the Cartesian product, relations and functions. Namely,

Definition 2.1

x× y := {〈u, v〉 | u ∈ x ∧ v ∈ y};

Rel := {R | ∀x∈R ∃y∃z x = 〈y, z〉};

dom(R) := {x | ∃y 〈x, y〉 ∈ R};

ran(R) := {y | ∃x 〈x, y〉 ∈ R};

Fun := {f ∈ Rel | ∀x∈f∀y∈f (p0x = p0y → p1x = p1y)};

f :x 7→ y :⇔ f ∈ Fun ∧ dom(f) = x ∧ ran(f) ⊆ y;

f(x) := ”the unique y s.t. 〈x, y〉 ∈ f” for f ∈ Fun and x ∈ dom(f).

We define Frege integers in the standard way (see [16, p.79-80]). Namely, set

0 := {Λ}, (1)

S(x) := {y ∪ {z} | y ∈ x ∧ z /∈ y}, (2)

and, finally,

IN :=
⋂

{x | 0 ∈ x ∧ ∀y∈xS(y) ∈ x}. (3)

All Peano axioms hold for so defined IN. We use 1 := S(0). Addition +, subtraction −, etc., can be defined
to satisfy the standard properties. For details of those developments, see e.g. [16, Ch.12]. Equally, we have
access to (primitive) recursion and induction on IN:

3

Lemma 2.2 (Induction on IN, see [16, p.81])
If X ⊆ IN, 0 ∈ X and ∀y∈X S(y) ∈ X, then X = IN.

Lemma 2.3 (Recursion on IN, see [16, p.83])
If X is a set, x is an element of X, and f :X × IN 7→ X, then there exists a unique function g : IN 7→ X s.t.
g(0) = x and g(S(k)) = f(g(k)) for each k ∈ IN.

We put
nil := 0.

We can define a set Seq of sequences so that

Seq = {y | y = nil ∨ ∃z∈Seq∃u y = 〈z, u〉}.

For this, we set

Seq :=
⋂

{x | nil ∈ x ∧ ∀y∈x∀u 〈y, u〉 ∈ x}. (4)

Since the definition of Seq is inductive, we have the standard principles of induction and recursion on Seq:

Lemma 2.4 (Induction on Seq)
If X ⊆ Seq, nil ∈ X and ∀y∈X∀u 〈y, u〉 ∈ X, then X = Seq.

Proof. From (4) we have Seq ⊆ X . Since by assumption X ⊆ Seq, by Ext′ we obtain X = Seq. 2

Lemma 2.5 (Recursion on Seq)
If X is a set, x is an element of X, and f :X ×V 7→ X, then there exists a unique function g : Seq 7→ X

s.t. g(nil) = x and g(〈y, u〉) = f(g(y), u) for each y ∈ Seq, u ∈ V.

Proof. The function g is defined very much as Seq is:

g :=
⋂

{z | 〈nil, x〉 ∈ z ∧ ∀y∈Seq∀u∈V∀v∈X (〈y, v〉 ∈ z → 〈〈y, u〉, f(v, u)〉 ∈ z)}.

2

One defines the length function ln :Seq 7→ IN by recursion on Seq to satisfy the following equations:

ln(nil) := 0,

ln(〈a, b〉) := ln(a) + 1 :

take in Lemma 2.5 X := IN, x := 0, and f(k, b) := k + 1.

From the definition of ln above we immediately have (by induction on Seq, Lemma 2.4), for c ∈ Seq,

ln(c) = 0↔ c = nil. (5)

By recursion on IN (Lemma 2.3) one defines the result of erasing k last members from a sequence c, 0 ≤ k ≤
ln(c):

rem(c, 0) := c,

rem(c, k + 1) := p0(rem(c, k)).

Observe (by induction on c, Lemma 2.4) that

rem(c, ln(c)) = nil.

4

The operation rem allows us to define the k-th last element (c)k of a sequence c, 1 ≤ k ≤ ln(c):

(c)k := p1(rem(c, k − 1)).

We also define, for c 6= nil,
head(c) := rem(c, ln(c)− 1).

The operation head, from a non-zero sequence c, gives a one-element sequence head(c) consisting of the first
(from the beginning) member of c. We will also need a complementary operation, bodyt(c), the remainder
from c after the head is ”cut off”:

by recursion on Seq, taking in Lemma 2.5 X := Seq, x := nil and f(z, u) := 〈z, u〉, one defines bodyt(c) for
c 6= nil in the following way:

bodyt(〈nil, b〉) := nil,

bodyt(〈〈a, d〉, b〉) := 〈bodyt(〈a, d〉), b〉.

Now we define the concatenation operation x ∗ y by recursion on Seq (X := Seq, f(z, u) := 〈z, u〉):

x ∗ nil := x,

x ∗ 〈y, u〉 := 〈x ∗ y, u〉,

for x ∈ Seq.

Observe that x∗y is a homogeneous function: all three variables must have the same type in any stratification
of ”x ∗ y = z”.

It’s also a routine check that for any c ∈ Seq, c 6= nil,

head(c) ∗ bodyt(c) = c. (6)

Lemma 2.6 Concatenation is associative, i.e.

∀x∈Seq∀y∈Seq∀z∈Seq x ∗ (y ∗ z) = (x ∗ y) ∗ z.

Proof. By induction on z. 2

Definition 2.7 (cf. [29, Def.2.1] and [30, Def.2])
By SCA sets w and w1 are defined as below:

w := {〈x, y〉 | x ∈ Seq ∧ y ∈ Seq ∧ ∃z∈Seq (y∗z = x)},

w1 := {〈x, y〉 | x ∈ Seq ∧ y ∈ Seq ∧ ∃z∈Seq (ln(z) = 1 ∧ y∗z = x)}.

We will use x w y and x w1 y in place of 〈x, y〉 ∈w and 〈x, y〉 ∈w1, resp.

Lemma 2.8

∀x∈Seq∀y∈Seq∀z∈Seq (y w z → x ∗ y w x ∗ z).

Proof. By associativity (Lemma 2.6). 2

A tree is a non-empty set of sequences, downwards closed with respect to the w-relation:

Definition 2.9 (cf. [29, Def.2.3] and [30, Def.3])
By SCA we define

Tree := {T ⊆ Seq | nil ∈ T ∧ ∀y∈T∀z (y w z → z ∈ T)}.

If T ∈ Tree, x wT y and x w1
T y will mean x ∈ T ∧ y ∈ T ∧ x w y and x ∈ T ∧ y ∈ T ∧ x w1 y, resp.

With these notations we will make a familiar use of bounded quantifiers: e.g. ∀x′ w 1
Txϕ[x′] will mean

∀x′ (x′ w1
T x→ ϕ[x′]).

5

Definition 2.10 If T, T ′ ∈ Tree we say that R is a bisimulation between T and T ′, written BS (R, T, T ′),
iff R ⊆ T × T ′, 〈nil, nil〉 ∈ R, and the following holds:

∀x∈T∀y∈T ′
(

〈x, y〉 ∈ R −→

∀x′w1
Tx∃y

′w1
T ′y 〈x′, y′〉 ∈ R

∧

∀y′w1
T ′y∃x′w1

Tx 〈x
′, y′〉 ∈ R

)

.
(7)

Definition 2.11 We define

T ∼= T ′ :⇔ T ∈ Tree ∧ T ′ ∈ Tree ∧ ∃RBS (R, T, T ′).

Lemma 2.12 ∼= is an equivalence relation on Tree, i.e. for every T, T ′, T ′′ ∈ Tree the following hold:

T ∼= T ; (8)

T ∼= T ′ → T ′ ∼= T ; (9)

T ∼= T ′ ∧ T ′ ∼= T ′′ → T ∼= T ′′. (10)

Proof. (8) is provided by the identity relation on T : {〈x, x〉 | x ∈ T}. (9) is provided by the inverse relation
R−1 := {〈y, x〉|〈x, y〉 ∈ R}. (10) is provided by the compositionR2◦R1 := {〈x, z〉|∃y(〈x, y〉 ∈ R1 ∧ 〈y, z〉 ∈ R2)}.

2

Definition 2.13 For T ∈ Tree and x ∈ T we define

Tx := {y ∈ Seq | x ∗ y ∈ T}.

Lemma 2.14 If T ∈ Tree and x ∈ T then Tx ∈ Tree.

Proof. By Definition 2.9 we need to prove

Tx ⊆ Seq ∧ nil ∈ Tx ∧ ∀y∈Tx∀z(y w z → z ∈ Tx).

Tx ⊆ Seq is immediate from Definition 2.13. nil ∈ Tx follows from x∗nil = x ∈ T . Now assume y ∈ Tx∧y w z.
We then have

x ∗ y ∈ T

and by Lemma 2.8
x ∗ y w x ∗ z.

Since T ∈ Tree, it must hold x ∗ z ∈ T , i.e. z ∈ Tx.

2

Lemma 2.15 If T, T ′∈Tree, BS (R, T, T ′) and 〈x, y〉 ∈ R then Tx
∼= T ′

y.

Proof. Tx, T
′
y ∈ Tree by Lemma 2.14. Consider

R′ := {〈x′, y′〉 | 〈x ∗ x′, y ∗ y′〉 ∈ R}.

From R ⊆ T × T ′ we have R′ ⊆ Tx × T
′
y. From 〈x, y〉 ∈ R we have 〈nil, nil〉 ∈ R′. Finally,

∀x′∈Tx∀y
′∈T ′

y

(

〈x′, y′〉 ∈ R′ −→

∀x′′w1
Tx
x′∃y′′w1

T ′

y

y′ 〈x′′, y′′〉 ∈ R′
∧

∀y′′w1
T ′

y

y′∃x′′w1
Tx
x′ 〈x′′, y′′〉 ∈ R′

)

follows from the condition (7), so that we can conclude BS (R′, Tx, T
′
y).

2

6

Lemma 2.16 If T, T ′∈Tree and T ∼= T ′ then

∀x (〈nil, x〉 ∈ T → ∃y (〈nil, y〉 ∈ T ′ ∧ T〈nil,x〉
∼= T ′

〈nil,y〉))
∧

∀y (〈nil, y〉 ∈ T ′ → ∃x (〈nil, x〉 ∈ T ∧ T〈nil,x〉
∼= T ′

〈nil,y〉)).

Proof. Let T, T ′∈Tree and BS (R, T, T ′). By the Definition 2.10 we have 〈nil, nil〉 ∈ R and

∀xw1
T nil∃yw1

T ′nil 〈x, y〉 ∈ R
∧

∀yw1
T ′nil∃xw1

T nil 〈x, y〉 ∈ R.

The claim now follows from Lemma 2.15. 2

Lemma 2.17

∀T ∈Tree∀T ′∈Tree
(

∀x (〈nil, x〉 ∈ T → ∃y (〈nil, y〉 ∈ T ′ ∧ T〈nil,x〉
∼= T ′

〈nil,y〉))

∧

∀y (〈nil, y〉 ∈ T ′ → ∃x (〈nil, x〉 ∈ T ∧ T〈nil,x〉
∼= T ′

〈nil,y〉)) → T ∼= T ′
)

.

Proof. Given
T ∈ Tree ∧ T ′∈Tree

and

∀x (〈nil, x〉 ∈ T → ∃y (〈nil, y〉 ∈ T ′ ∧ T〈nil,x〉
∼= T ′

〈nil,y〉)) (11)
∧

∀y (〈nil, y〉 ∈ T ′ → ∃x (〈nil, x〉 ∈ T ∧ T〈nil,x〉
∼= T ′

〈nil,y〉)), (12)

set
R := {〈nil, nil〉}

⋃

{〈x, y〉 | x ∈ T−{nil} ∧ y ∈ T ′−{nil} ∧ Tx
∼= T ′

y}. (13)

Claim. R is a bisimulation between T and T ′.

/- From (13) we immediately have R ⊆ T × T ′ and 〈nil, nil〉 ∈ R. We must now show

∀x∈T∀y∈T ′
(

〈x, y〉 ∈ R −→

∀x′w1
Tx∃y

′w1
T ′y 〈x′, y′〉 ∈ R

∧

∀y′w1
T ′y∃x′w1

Tx 〈x
′, y′〉 ∈ R

)

.
(14)

Fix x ∈ T , y ∈ T ′. First consider the case x = nil = y. Fix x′ w1
T nil. By (11) ∃y′w1

T ′nil Tx′
∼= T ′

y′ . By (13)

〈x′, y′〉 ∈ R for these x′, y′. Similarly if we start with y′ w1
T ′ nil.

Observe that (13) implies 〈x, y〉 ∈ R → (x 6= nil ↔ y 6= nil). So it remains to consider the case 〈x, y〉 ∈
R ∧ x 6= nil 6= y. Assuming x 6= nil 6= y, 〈x, y〉 ∈ R yields Tx

∼= T ′
y. By Lemma 2.16

∀x′ (〈nil, x′〉 ∈ Tx → ∃y
′ (〈nil, y′〉 ∈ T ′

y ∧ T〈x,x′〉
∼= T ′

〈y,y′〉))
∧

∀y′ (〈nil, y′〉 ∈ T ′
y → ∃x

′ (〈nil, x′〉 ∈ Tx ∧ T〈x,x′〉
∼= T ′

〈y,y′〉)),

i.e.
∀x′w1

Tx∃y
′w1

T ′y Tx′
∼= T ′

y′

∧

∀y′w1
T ′y∃x′w1

TxTx′
∼= T ′

y′ ,

which yields the conclusion of (14).

-/

2

Now, if

T = {nil}
⋃

{〈nil, y1, . . . , yn〉 ∈ T} ∈ Tree,

7

by T̆ we want to denote a tree

{nil}
⋃

{〈nil, {y1}, . . . , {yn}〉 | 〈nil, y1, . . . , yn〉 ∈ T}.

For establishing properties of T̆ , we will use the NFU-fact

∀x∀y (x = y ↔ {x} = {y}). (15)

The exact definitions are below.

Definition 2.18 Set

=0 := {〈nil, nil〉},

=1 := {〈{p}, q〉 | p ∈ Seq ∧ q ∈ Seq ∧ ln(p) = 1 ∧ ln(q) = 1 ∧ {(p)1} = (q)1},

=k+2 := {〈{p}, q〉 | p ∈ Seq ∧ q ∈ Seq ∧ ln(p) > 1 ∧ ln(q) > 1 ∧ {(p)1} = (q)1 ∧ 〈{rem(p, 1)}, rem(q, 1)〉 ∈ =k+1}.

By recursion on IN (Lemma 2.3) there exists a function g s.t.

∀k∈IN g(k) = =k .

Finally we set

p+ = q :⇔ p = nil ∧ q = nil ∨ ∃k∈IN−{0} 〈{p}, q〉 ∈ g(k).

Definition 2.19 For T ∈ Tree we define

T̆ := {q ∈ Seq | ∃p∈T p+ = q}.

Lemma 2.20

∀p∈Seq∃!q∈Seq p+ = q.

Proof. By induction on Seq, using the facts (5), (15) and the axiom Pair. 2

Lemma 2.21

∀T ∈Tree∃!U∈Tree U = T̆ .

Proof. Use the Definition 2.19, Lemma 2.20, Definition 2.9 and the Equality axioms of NFUP. 2

Lemma 2.22 For T1, T2 ∈ Tree it holds:

T1
∼= T2 ↔ T̆1

∼= T̆2.

Proof. It suffices to use the equivalence

BS (R, T1, T2)↔ BS (R̆, T̆1, T̆2),

where
R̆ := {〈q1, q2〉 | 〈p1, p2〉 ∈ R ∧ p

+

1 = q1 ∧ p
+

2 = q2},

and note that both R and R̆ are definable from each other in a stratified way. 2

8

3 Modelling NF

Definition 3.1 We define

S ∈̆ T :⇔ S ∈ Tree ∧ T ∈ Tree ∧ ∃x
(

〈nil, x〉 ∈ T ∧ S̆ ∼= T〈nil,x〉

)

.

Lemma 3.2 For S, S′, T, T ′ ∈ Tree the following hold:

(1) S ∼= S′ ∧ S ∈̆ T → S′ ∈̆ T ;
(2) T ∼= T ′ ∧ S ∈̆ T → S ∈̆ T ′.

Proof. (1) follows from Lemmata 2.22 and 2.12. (2) follows from the Definition 3.1, Lemma 2.16 and
Lemma 2.12. 2

Definition 3.3 Let ϕ be an L∈-formula and Z be a set. By ϕZ we denote the formula obtained from ϕ by
replacing = by ∼=, ∈ by ∈̆ , and all quantifiers Qz by QZ∈Z.
When ϕ is a statement, we say that Z satisfies ϕ, Z |= ϕ, iff ϕZ holds.

Lemma 3.4 Let ϕ(x, y1, . . . , yk) be a formula of L∈ with all free variables shown and Z be a set. Let
Yi ∈ Tree for all 1 ≤ i ≤ k. Let X1, X2 ∈ Tree and X1

∼= X2. Then

ϕZ[X1]↔ ϕZ[X2].

In other words, any set Z satisfies the Equality axioms of NF.

Proof. By induction on ϕ. The atomic case follows from Lemmata 2.12 and 3.2. 2

Lemma 3.5 The defining formulae in the Definitions 2.11 and 3.1 are stratified. In any stratification of
T ∼= T ′, T and T ′ must have the same type, and in any stratification of S ∈̆ T , the type of T must be 1
higher than the type of S.

Proof. By inspection. 2

Lemma 3.6 ϕZ satisfies Separation for any stratified ϕ, i.e. if ϕ[x] is a stratified formula of L∈ and Z is a
set, then

∃Y ∀X
(

X ∈ Y ↔ X ∈ Z ∧ ϕZ[X]
)

. (16)

Proof. In view of Lemma 3.5, the only obstacle why the formula X ∈ Z ∧ ϕZ[X] could be unstratified is
that it might contain several occurrences of the variable Z. Let ψZ1...Zn [X] be a new formula, obtained from
X ∈ Z ∧ ϕZ[X] by replacing each occurrence of Z by occurrence of a new variable Zi. Then the formula
ψZ1...Zn [X] is stratified. By SCA, we have

∀Z1 . . . ∀Zn ∃Y ∀X
(

X ∈ Y ↔ ψZ1...Zn [X]
)

. (17)

Substituting now Z for Z1, . . . ,Zn, we obtain (16). 2

Now we introduce the following construction. If

T = {nil}
⋃

{〈nil, y1, . . . , yn〉 ∈ T} ∈ Tree,

by T we want to denote a tree

{nil}
⋃

{〈nil, T, {y1}, . . . , {yn})〉 | 〈nil, y1, . . . , yn〉 ∈ T}.

The exact definition is below.

9

Definition 3.7 For T ∈ Tree we define:

T := {nil}
⋃

{〈nil, T 〉 ∗ q | q ∈ T̆}.

Lemma 3.8 For any T ∈ Tree it holds

T ∈ Tree ∧ T 〈nil,T 〉 = T̆ .

Proof is straightforward, using Definitions 2.19, 3.7 and the axiom Ext′. 2

Definition 3.9 For any Y ⊆ Tree we define

Y∗ := {nil} ∪
⋃

{T | T ∈ Y}.

Lemma 3.10 For any Y ⊆ Tree we have Y∗ ∈ Tree and

∀T
(

〈nil, T 〉 ∈ Y∗ → Y∗
〈nil,T 〉 = T̆ ∧ T ∈ Y

)

. (18)

Proof. Y∗ ∈ Tree is obvious from the definition of Y∗. For (18) we additionally employ Lemma 3.8. 2

Lemma 3.11

∀Y⊆Tree∃!T ∈Tree T = Y∗.

Proof. Existence follows from Lemma 3.10. Uniqueness follows from the Equality axioms of NFUP. 2

Definition 3.12 For any Z ⊆ Tree we define

pw(Z) := {Y∗ |Y ⊆ Z}.

Lemma 3.13

∀Z⊆Tree∃!W⊆Tree W = pw(Z).

Proof. Existence follows from SCA and Lemma 3.11. Uniqueness follows from the Equality axioms of
NFUP. 2

Lemma 3.14 The operation pw is monotone on Tree, i.e.

∀Z1⊆Tree∀Z2⊆Tree
(

Z1 ⊆ Z2 → pw(Z1) ⊆ pw(Z2)
)

.

Proof. To show {Z∗ | Z ⊆ Z1} ⊆ {Z
∗ | Z ⊆ Z2}, we observe that if Z ⊆ Z1 then Z ⊆ Z2, so Z∗ ∈ pw(Z2). 2

Definition 3.15 1. A set Z ⊆ Tree is called a (pw-) fixpoint iff pw(Z) ⊆ Z.

2. A set Z ⊆ Tree is called a (pw-) least fixpoint iff it is a fixpoint and ∀Y⊆Tree
(

pw(Y) ⊆ Y→ Z ⊆ Y
)

.

Lemma 3.16 If Z is a least fixpoint then Z = pw(Z).

Proof. Since Λ∗ ∈ pw(Z), by Ext′ it’s sufficient to show

pw(Z) ⊆ Z (19)

and
Z ⊆ pw(Z). (20)

(19) follows from the fact that Z is a fixpoint. Since the operation pw is monotone (Lemma 3.14), we obtain

pw(pw(Z)) ⊆ pw(Z),

i.e. pw(Z) is also a fixpoint. But since Z is a least fixpoint, we obtain (20).

2

10

Lemma 3.17 A least fixpoint, if exists, is unique.

Proof. Let Z1 and Z2 be two least fixpoints. By Lemma 3.16 Z1 = pw(Z1) and Z2 = pw(Z2). Then we also
have Λ∗ ∈ Z1 and Λ∗ ∈ Z2. Since Z1 and Z2 are both least fixpoints, Z1 ⊆ Z2 and Z2 ⊆ Z1 both hold. It
remains to apply the Ext′ axiom of NFUP. 2

Lemma 3.18 If Z is a least fixpoint then the following holds:

∀T ∈Z∀T ′∈Z
(

∀S∈Z (S ∈̆ T ↔ S ∈̆ T ′)→ T ∼= T ′
)

.

In other words, any least fixpoint satisfies the Extensionality axiom of NF.

Proof. Given
T ∈ Z ∧ T ′∈Z ∧ ∀S∈Z (S ∈̆ T ↔ S ∈̆ T ′), (21)

first we observe, since Z ⊆ Tree, that
T ∈ Tree ∧ T ′∈Tree. (22)

Now we aim to show

∀x (〈nil, x〉 ∈ T → ∃y (〈nil, y〉 ∈ T ′ ∧ T〈nil,x〉
∼= T ′

〈nil,y〉)) (23)
∧

∀y (〈nil, y〉 ∈ T ′ → ∃x (〈nil, x〉 ∈ T ∧ T〈nil,x〉
∼= T ′

〈nil,y〉)). (24)

From (21) we have
∀S∈Z (S ∈̆ T ↔ S ∈̆ T ′). (25)

In order to prove (23), assume 〈nil, x〉 ∈ T . Since T ∈ Z and Z = pw(Z) (Lemma 3.16), we have T ∈ pw(Z),
i.e.

∃Y⊆Z Y∗ = T. (26)

By Lemma 3.10
x ∈ Y ∧Y∗

〈nil,x〉 = x̆, (27)

which implies
x ∈ Z ∧ T〈nil,x〉 = x̆. (28)

Then we must have x ∈̆ T , and then by (25) x ∈̆ T ′, i.e.

∃y
(

〈nil, y〉 ∈ T ′ ∧ x̆ ∼= T ′
〈nil,y〉

)

. (29)

From (28) and (29) we obtain
T〈nil,x〉

∼= T ′
〈nil,y〉

for the abovementioned x, y.

For (24), we proceed in the similar manner, now employing the direction ← of (25).

This establishes (23) and (24), and hence, by Lemma 2.17,

T ∼= T ′.

2

Comment. Does the operation pw have fixpoints? Yes, – for example the sets Tree, pw(Tree), pw(pw(Tree)),
. . . . But we don’t know whether it’s consistent to assume that it has a least fixpoint.

Lemma 3.19 Any fixpoint satisfies SCA of NF.

11

Proof. Let Z be a fixpoint. Let ϕ(x, y1, . . . , yk) be a stratified formula of L∈ with all free variables shown.
Let Yi ∈ Z for all 1 ≤ i ≤ k. We need to prove

∃Y∗∈Z∀X∈Z
(

X ∈̆ Y∗ ↔ ϕZ(X,Y1, . . . , Yk)
)

. (30)

By Lemma 3.6 set
Y := {X ∈ Z | ϕZ[X]}. (31)

Defining Y∗ as in Definition 3.9 and using that Z is a fixpoint, we conclude Y∗ ∈ Z.

Now, assuming T ∈ Z, it remains to prove

T ∈̆ Y∗ ↔ ϕZ[T].

In → direction, assume T ∈̆ Y∗. By Definition 3.1 this means

∃T ′
(

〈nil, T ′〉 ∈ Y∗ ∧ T̆ ∼= Y∗
〈nil,T ′〉

)

, (32)

which by Lemma 3.10 implies

∃T ′∈Y
(

T̆ ∼= Y∗
〈nil,T ′〉 = T̆ ′

)

. (33)

By Lemma 2.22 we have now
T ∼= T ′. (34)

Now from (31) and Lemma 3.4 we conclude ϕZ[T].

In the converse direction, assume ϕZ[T]. Then by (31)

T ∈ Y, (35)

and by Definition 3.9 and Lemma 3.8
T ∈̆ Y∗. (36)

2

Definition 3.20 Let MID be the axiom saying

There exists a least fixpoint of the pw operation.

Theorem 1 NF is consistent relative to NFUP + MID.

Proof. Follows from Lemmata 3.4, 3.19 and 3.18. 2

References

[1] P. Aczel. Non-Well-Founded Sets. CSLI Lecture Notes No. 14, Stanford University, 1988

[2] J. Barwise, L. Moss. Vicious Circles. CSLI Lecture Notes No. 60, Stanford University, 1996

[3] M. Boffa. The consistency problem for NF. Journal of Symbolic Logic 42, pp. 215–220, 1977

[4] W. Buchholz, S. Feferman, W. Pohlers, W. Sieg. Iterated Inductive Definitions and Subsystems of Analysis.
Lecture Notes in Mathematics 897, Springer, 1981

[5] A. Cantini. Relating Quine’s NF to Feferman’s EM. Studia Logica 62, pp. 141-163, 1999

[6] S. Feferman. Some formal systems for the unlimited theory of structures and categories. Unpublished
manuscript, 52 pp., Abstract in the Journal of Symbolic Logic 39, pp. 374–375, 1974

12

[7] S. Feferman. A language and axioms for explicit mathematics. In: Algebra and Logic, Lecture Notes in
Mathematics 450: 87–139, 1975

[8] S. Feferman. Constructive theories of functions and classes. In: Logic Colloquium ’78, J.N. Crossley (ed.),
159–224, 1979

[9] S. Feferman. Monotone inductive definitions. In: The L.E.J. Brower Centenary Symposium, A.S. Troelstra,
D. van Dallen (eds.), North-Holland, pp. 77–89, 1982

[10] S. Feferman. Typical ambiguity: trying to have your cake and eat it too. To appear in the Proceedings of the
conference Russell 2001, Munich, June 2–5, 2001

[11] H. Friedman. One Hundred and Two Problems in Mathematical Logic. Journal of Symbolic Logic 40(2):
113–129, 1975

[12] T. E. Forster. Set Theory with a Universal Set, second edition. Clarendon Press, Oxford, 1995

[13] T. E. Forster. Quine’s NF, 60 years on. American Mathematical Monthly, vol. 104, no. 9, pp. 838–845, 1997

[14] T. Glass, M. Rathjen, A. Schlüter. On the proof-theoretic strength of monotone induction in explicit mathe-
matics. Annals of Pure and Applied Logic, 85: 1-46, 1997

[15] M. R. Holmes. The Axiom of Anti-Foundation in Jensen’s ’New Foundations with Ur-Elements.’ Bulletin de
la Societe Mathematique de Belgique (serie B) 43, pp. 167–179, 1991

[16] M. R. Holmes. Elementary Set Theory with a Universal Set, vol. 10 of the Cahiers du Centre de logique,
Academia, Louvain-la-Neuve (Belgium), 242 pp., 1998

[17] M. R. Holmes. Strong axioms of infinity in NFU. Journal of Symbolic Logic, vol. 66, no. 1, pp. 87–116, 2001

[18] M. R. Holmes. New Foundations home page. http://math.boisestate.edu/~holmes/holmes/nf.html

[19] R. B. Jensen. On the consistency of a slight(?) modification of Quine’s NF. Synthese 19, pp. 250-263, 1969

[20] W. V. Quine. New foundations for mathematical logic. American Mathematical Monthly 44, pp. 70–80, 1937

[21] W. V. Quine. On ordered pairs. Journal of Symbolic Logic 10, pp. 95–96, 1945

[22] M. Rathjen. Explicit Mathematics with monotone inductive definitions: a survey. In: W. Sieg et al. (eds.),
Reflections on the Foundations of Mathematics: Essays in Honour of Solomon Feferman, Lecture Notes in
Logic 15, pp. 329–346, 2002

[23] J. B. Rosser. On the consistency of Quine’s new foundations for mathematical logic. Journal of Symbolic Logic
4, pp. 15–24, 1939

[24] J. B. Rosser. The axiom of infinity in Quine’s New Foundations. Journal of Symbolic Logic 17, pp. 238–242,
1952

[25] R. Solovay. The consistency strength of NFUB. Preprint, 39 pp., 2002

[26] E. P. Specker. The axiom of choice in Quine’s new foundations for mathematical logic. Proceedings of the
National Academy of Sciences of the USA, 39, pp. 972–975, 1953

[27] E. P. Specker. Typical ambiguity. In: E. Nagel (ed.), Logic, methodology and philosophy of science, Stanford
University Press, pp. 116–123, 1962

[28] S. Tupailo. Realization of analysis into Explicit Mathematics. Journal of Symbolic Logic 66(4), 1848–1864,
2001

[29] S. Tupailo. Realization of Constructive Set Theory into Explicit Mathematics: a lower bound for impredicative
Mahlo universe. Annals of Pure and Applied Logic, vol. 120/1–3, pp. 165–196, 2003

[30] S. Tupailo. On Non-wellfounded Constructive Set Theory: Construction of Non-wellfounded Sets in Explicit
Mathematics. In: G. Mints, R. Muskens (eds.), Games, Logic, and Constructive Sets, 109–125, CSLI Publica-
tions, 2003

[31] S. Tupailo. On the intuitionistic strength of monotone inductive definitions. Journal of Symbolic Logic 69,
no. 3, 790-798, 2004

13

